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Abstract
There is growing interest in the role of predictive analytics in sport, where such extensive data collection provides an exciting oppor-
tunity for the development and utilisation of prediction models for medical and performance purposes. Clinical prediction models 
have traditionally been developed using regression-based approaches, although newer machine learning methods are becoming 
increasingly popular. Machine learning models are considered 'black box'. In parallel with the increase in machine learning, there 
is also an emergence of proprietary prediction models that have been developed by researchers with the aim of becoming com-
mercially available. Consequently, because of the profitable nature of proprietary systems, developers are often reluctant to trans-
parently report (or make freely available) the development and validation of their prediction algorithms; the term 'black box' also 
applies to these systems. The lack of transparency and unavailability of algorithms to allow implementation by others of ‘black box’ 
approaches is concerning as it prevents independent evaluation of model performance, interpretability, utility, and generalisability 
prior to implementation within a sports medicine and performance environment. Therefore, in this Current Opinion article, we: 
(1) critically examine the use of black box prediction methodology and discuss its limited applicability in sport, and (2) argue 
that black box methods may pose a threat to delivery and development of effective athlete care and, instead, highlight why 
transparency and collaboration in prediction research and product development are essential to improve the integration of 
prediction models into sports medicine and performance.
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Key Points 

Transparent reporting of prediction models through full 
equations or compete code is of vital importance.

Without transparency, black box models cannot be 
externally validated, which is essential to understanding 
model performance and generalisability.

Black box prediction models may pose a threat to deliv-
ery and development of effective athlete care.

1  Introduction

There is growing interest in the role of data analytics for predic-
tion purposes in sport [1] and sports medicine. Indeed, being 
able to accurately predict the risk of incurring future injuries or 
changes in performance as early as possible has recently been 
viewed as the 'holy grail' of sports medicine research [2].
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The extensive volume of medical, training and perfor-
mance data collected in elite sport provides an exciting 
opportunity for the development and utilisation of clinical 
prediction models for medical and performance purposes. 
Clinical prediction models can be used to assist practition-
ers with clinical decision making; they incorporate data 
from multiple predictor variables (termed predictors herein) 
measured at a point in time, to estimate an individual’s prob-
ability of a health- or performance-related outcome being 
present at the time of measurement (diagnosis) or whether 
it will occur in the future (prognosis) [2, 3] (for list of key 
terms please refer to Table 1) [4, 5].

It is imperative to understand that predictors can be either 
causal or non-causal, as long as they have an association with 
the health outcome of interest. Causal factors have predictive 
value because they contribute to the cause of an event (such 
as an injury or change in performance) through direct or indi-
rect mechanisms [6]. Non-causal factors are simply associated 
with an outcome so have predictive value, but they do not have 
a direct or indirect influence on whether or not an event hap-
pens [5]. Individual predictors usually have poor predictive 
value if used in isolation. However, when multiple predic-
tors are used in combination, the ability of producing more 
nuanced individualised predictions can be realized [6, 7].

Clinical prediction models have traditionally been devel-
oped using regression-based approaches, although newer 
machine learning (ML) methods are becoming increasingly 
popular [8, 9]. ML methods are often viewed as opaque as the 
underlying architecture is typically too complex to disentangle 
all the predictor-outcome relationships and the availability of 
implemented software to obtain individualised predictions is 
rarely seen [8, 10–12]. For this reason, ML models are consid-
ered as 'black boxes' [10]. Specifically, ‘black box’ is defined 
as when a model or algorithm is not interpretable by humans 
or the reasons underlying a model risk score or choice are 
not available [13]. In parallel with the increase in ML, there 
is also an emergence of proprietary prediction models (and 
associated tools to facilitate implementation, e.g., software, 

online calculators, smartphone apps) that have been developed 
by researchers with the aim of becoming commercially avail-
able [1, 14]. Consequently, because of the profitable nature 
of proprietary systems [15], developers are often reluctant to 
transparently report, or make freely available, the develop-
ment and validation of their prediction algorithms [8, 16]; the 
term 'black box' therefore also applies to these systems [9, 11].

While the number of prediction model development 
studies conducted in elite sport is currently modest over-
all [17], there is evidence that regardless of the statistical 
approach, the majority are poorly developed, opaque in 
their reporting (through not reporting the full complete 
code, algorithm description or model equations), and are 
not externally validated [17, 18].

The lack of transparency of ‘black box’ approaches is 
concerning as it prevents independent evaluation of model 
performance, interpretability, utility and generalisability 
prior to implementation within a sports medicine and 
performance environment [3]. Further, this opaqueness 
hinders model uptake and clinic implementation as medi-
cal professionals may not understand or correctly inter-
pret how different predictors relate to the outcome [19]. 
Therefore, in this Current Opinion article, we: (1) criti-
cally examine the use of black box prediction methodol-
ogy and discuss its limited applicability in sport, and (2) 
argue that black box methods may pose a threat to effective 
athlete care and, instead, highlight why transparency and 
collaboration in prediction research and product develop-
ment is essential to improve the integration of prediction 
models into sports medicine and performance.

2 � Sophisticated Black Boxes Have Limited 
Real‑World Use

Hernán categorizes data analytics into three types [20]. 
Firstly, descriptive tasks involve using data to quanti-
tatively summarise certain features of interest (e.g., a 

Table 1   Key terms

Term Definition

Predictors Any variable that is predictive of the outcome (i.e., injury)
Causality The relation of cause to effect
Clinical prediction models Are multivariable mathematical models combining multiple predictors to estimate the risk or probability of an 

event. Both causal and non-causal factors can be used to aid risk prediction. They are developed to aid clinicians 
in determining the risk of a patient developing an outcome

Overfitting An overly complex model that fits well to the idiosyncrasies in the data used to develop the model (capturing spuri-
ous unimportant predictor-outcome relationships), but fails to predict for new individuals

Internal validation An evaluation of the model in the underlying population where the data used to develop the model originated 
from (using bootstrapping or cross-validation) to quantify overfitting of the developed model and estimate the 
optimism in model performance

External validation Evaluating model performance in new data
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descriptive task could be a clinical audit to summarise the 
proportion of hamstring muscle injuries observed within 
a football team). Secondly, prediction tasks, also known 
as predictive modelling [21], select particular data and 
map these to outcomes of interest [20]. These tasks can 
therefore determine associations between predictors and 
a health or performance outcome, or can utilise multi-
ple predictors in a model to compute the probability of a 
future event occurring for an individual [22]. For exam-
ple, as a prediction task, one could calculate the risk of a 
hamstring injury occurring to an athlete during a season 
using a model that uses any combination of causal and 
non-causal predictors. Thirdly, counterfactual prediction 
tasks, also known as explanatory modelling [21], deter-
mine the probability of an outcome as if circumstances 
were different in some way because of an intervention, and 
are underpinned by a causal inference framework [20]. As 
an example of counterfactual prediction, one could poten-
tially calculate the risk of a hamstring injury by incorpo-
rating or not incorporating eccentric hamstring exercises 
into an athlete’s injury mitigation program, on the basis 
that reduced hamstring strength was a causal predictor for 
hamstring injury [23]. Therefore, any interventions that 
are aimed at modifying causal factors will consequently 
change their predictive relationship, thus modifying an 
individual’s probability of an event occurring [24].

Determining predictors that are causal in relation to an 
outcome can improve a practitioner’s ability to create more 
precise and impactful interventions [25], and this can be 
achieved through careful evaluation of the literature. How-
ever, a limitation of the current evidence—especially from 
studies that investigate the association between training 
load and injury risk – is that results are often incorrectly 
framed as though causality has been evaluated, even when 
their methodology does not allow such inferences; there is 
a clear need for further investigation of injury aetiology in 
elite sport using a counterfactual, explanatory framework 
[26–28].

Traditionally, prediction models have been developed 
using regression-based statistical methods (such as logis-
tic, linear and survival analyses) to calculate a risk score 
for an individual [29]. If the aim of a model is to pre-
dict an outcome, then these traditional approaches can be 
used to develop models with any predictors that have an 
association with the outcome of interest [20, 21]. But if 
the aim is to develop a model that has the potential to 
identify causal relationships, an additional benefit of these 
traditional approaches is that models can be built around 
a counterfactual, explanatory framework where existing 
evidence, expert knowledge and clinical reasoning can 
be used to select predictors considered important both in 
terms of clinical relevance and to adjust for the effect of 
confounding factors [20, 21].

In contrast, ML (e.g., tree-based methods, gradient boost-
ing machines, support vector machines) and deep learning 
(artificial neural networks) methods use bespoke algorithms 
that identify data patterns and determine associations within 
a dataset, using minimal assumptions about the data being 
used [30]. These approaches are perceived to offer increased 
flexibility to capture nonlinear associations and higher order 
interactions that exist between a set of predictors and outcome 
[31, 32]. However, similar to proprietary systems, if developed 
using ML, full models [3, 33] and the methodologic assump-
tions used in a model’s development are unknown [5, 22, 34], 
thus contributing to their opacity.

In addition, while these methods typically employ 
extremely complex processes to determine associations 
between potential predictors and outcomes, they are not built 
using expert knowledge and clinical reasoning, so it is likely 
that during model development, predictors are selected from a 
dataset that have no causal relevance [20, 23]. This means that 
they cannot provide insights into: (1) what interventions could 
be implemented or (2) the magnitude of those interventions 
needed to reduce athlete risk.

Because such models have little or no causal relevance, and 
the underlying models and their assumptions are not reported, 
the black box methods are helpful for prediction tasks only. In 
other words, models developed from such processes in elite 
sport should only be used to communicate risks or probabili-
ties of an event to practitioners, athletes and coaching staff, 
rather than assisting with selecting interventions that are 
designed to change the probability of an outcome. However, 
a danger is that, in practice, a lack of awareness regarding the 
conceptual limitations of black box models means that practi-
tioners could erroneously use them for this latter function, thus 
inadvertently assuming a causal relationship between a predic-
tor and an outcome, even where there is no evidence of one. 
The assumption of a causal relationship is problematic because 
an intervention is therefore unlikely to be effective, or, worse, 
may influence an unknown or different causal pathway. This 
may result in a possible cost to the athlete, such as increasing 
the risk of a different injury for instance [26, 27].

3 � Black Boxes Cause Problems for Validation 
and Implementation

The absence of reporting transparency associated with 
black box models is problematic because it inhibits the 
understanding of how they have been internally or exter-
nally validated, which are essential processes to under-
stand model performance and generalisability [18, 35].

Prediction models usually demonstrate improved (or 
optimistic) performance on the original development 
data compared to their performance if they are used on 
new individuals or future data [36]. This is often due to 
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overfitting, which occurs when fitted models are too com-
plex (with respect to the available data) and are overly 
adapted to all the idiosyncrasies within the data [34]. In 
order to counteract or minimise the effect of overfitting 
during development, internal validation should be per-
formed to obtain an optimism-corrected (unbiased) assess-
ment of model performance [37]. Splitting data into devel-
opment ('training') and validation ('test') data sets should 
be avoided as this approach will decrease the sample size 
for both model development and performance assessment, 
actually increasing the risk of overfitting [37]. Ideally, all 
available data should be used to develop and internally 
validate the model using bootstrapping or cross-validation 
to counteract the risk of overfitting [38, 39].

Crucially, because black box models do not report full 
equations (for regression-based models) or full code, 
hyperparameters or provide algorithms on a repository (for 
ML models) [40, 41], they are at high risk for overfitting. 
In particular, while ML methods may have great potential 
for making accurate predictions [42], these approaches 
typically result in overfitted models that have frequently 
demonstrated poor prospective validation [43].

It is recommended that prior to using any model in a 
clinical setting, they should be externally validated in the 
target population for which they are intended, as mod-
els may not perform well in different sport organizations 
or athletic settings [44]. However, the lack of transpar-
ency of black box models is also problematic for external 
validation processes [18, 35]. Indeed, in a recent system-
atic review, prediction model external validation quality 
and reporting transparency was very poor, with 57% not 
reporting the full model or updated model [18].

External validation can consist of temporal- (same set-
ting or population), geographic- (e.g., different sport club) 
or domain- (e.g., college athletes) based methods [44]. It 
should be noted that merely performing an external vali-
dation does not necessarily mean that the model is use-
ful—external validation is assessing the performance of 
the model in different data. For example, a model devel-
oped in one organization to predict the risk of professional 
baseball pitcher arm injuries could be externally validated 
in another organization. The model may show poor exter-
nal validation performance, which could imply a lack of 
clinical usefulness and potential harm, and so would not 
be recommended for clinical implementation.

Using black box models that do not have transparent vali-
dation processes in practice can result in a range of conse-
quences. At the very least, prediction performance may be 
unreliable, and so would not necessarily be generalizable 
to new individuals or populations, thus resulting in models 
with little clinical usefulness [3]. However, more seriously, 
if models are used where their performance is questionable, 
this can have significant adverse implications for the health 

of the individuals for which the models are intended [7]. 
For example, in addition to the issues highlighted earlier 
that surround the use of black box models for making erro-
neous causal assumptions, if a poorly performing model is 
used to decide whether athletes require an intervention, this 
could result in the delivery of inappropriate or unsuitable 
interventions, which could be harmful or detrimental to the 
health and wellbeing of the athlete. To use a further clinical 
example, Obermeyer et al. [45] independently evaluated a 
commercial, proprietary black box prediction model that was 
used widely within American healthcare systems to identify 
patients with complex health needs and provide additional 
healthcare resource interventions. The authors used a dataset 
that contained all of the algorithm’s predictions, as well as 
all of the data variables needed to establish the mechanisms 
responsible for differences in predicted risks. They found 
that predictions-derived models suffered from racial bias, 
which resulted in unequal access to healthcare among differ-
ent groups, and potentially directly affected patient health.

Therefore, it should be strongly emphasised that if prac-
titioners are considering whether to use a clinical prediction 
model or buy costly proprietary prediction software systems 
that have been developed using black box methods, if it is 
unclear whether a system has been validated accordingly, 
they should question whether it is safe and appropriate for 
use in practice.

4 � A Change in Tactics to Advance Athlete 
Care: From Black Boxes to Transparency 
and Collaboration

Irrespective of the methods used to develop and validate 
prediction models, the importance of transparent develop-
ment and validation processes cannot be underestimated, 
and are vital to allow clinicians to make informed choices on 
the potential risks and benefits of implementing such black 
box models into practice. While enhancing reproducibility, 
transparent reporting also allows researchers and practition-
ers to interpret the validity, performance and, ultimately, 
the clinical utility of such models in practice [3]. In particu-
lar, reporting of complete equations (for regression-based 
models, e.g., all the regression coefficients including the 
intercept) [8] or the complete code and tuned hyperparam-
eters (e.g., for machine learning and deep learning models) 
[3, 46] can allow the creation of easy to use applications, 
where sports medicine practitioners can input relevant data 
to calculate an individual athlete’s overall risk score [8]. 
In the case of proprietary risk-prediction models, steps can 
be taken to keep intellectual property guarded while still 
performing transparent validation and performance assess-
ments such as reporting likelihood or odds ratios for all pre-
dictors, signing non-disclosure agreements, or sharing the 
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algorithm logic, to name a few [47]. If a company does not 
want to disclose its model, it is possible to reverse engineer 
prediction outcomes in a separate sample. However, this is 
untenable as a long-term validation solution [8]. For further 
information on reporting model transparency, please refer to 
Transparent Reporting of a multivariable prediction model 
for Individual Prognosis Or Diagnosis (TRIPOD) [3] and 
TRIPOD: Artificial Intelligence [3].

Increasing the transparency of black box models provides 
an opportunity for collaboration between sport organizations 
or leagues. Increasing collaborative opportunities can help 
circumvent a specific issue that affects the development of 
prediction models in sport, which is limited sample size [26, 
27]. For example, prediction model sample size calculations 
are based upon the number of events (in this case, injuries), 
not on the overall sample size [48–50]. Further, external 
prediction model validation is grounded on the number of 
events, distribution of the sample risk, and calibration [51, 
52]. Most sport organizations do not sustain enough injuries 
within a given season, or multiple seasons, to develop or 
externally validate a model accurately. Only by collaborating 
with multiple sport organizations or leagues could proper 
prediction model development and external validation be 
performed. Without model transparency, these collabora-
tions are impossible and, thus, accurate and useful prediction 
models cannot be developed or validated [53].

5 � Conclusion

The improvements in technology [54–56] and the rise of 
data-driven methods [57–60] provide an exciting oppor-
tunity for the development, validation and incorporation 
of prediction models within sports medicine practice. 
The application of prediction model methodology can aid 
sports medicine clinicians and performance professionals 
in identifying predictors that most influence injury risk 
or changes in performance. However, without full trans-
parency of reporting and the complete presentation of all 
model equations (regression-based approaches) [3] or code 
(machine learning) [33], these methods become black 
boxes that cannot aid in interpretation, or guide interven-
tion. Further, these methods may potentially waste scarce 
resources including athlete and clinician time. While 
prediction models in sports medicine are developed with 
the intention of facilitating athlete care, we argue that, 
paradoxically, the creation of opaque models significantly 
inhibits their influence. Furthermore, opaque black box 
models may indeed hinder or threaten delivery of effec-
tive healthcare or training programmes if they are applied 
in practice. In this Current Opinion article, we strongly 
advocate the use of transparency and collaboration to 

enhance the rigour of future model development and 
validation studies, which may culminate in more accurate 
and useful future models for implementation within elite 
sport. Furthermore, it is hoped that this paper will increase 
practitioner awareness of the issues surrounding black box 
predictive analytics, and assist with the evaluation of such 
models to facilitate informed decisions regarding clinical 
implementation.
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